Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36837678

RESUMO

The following paper offers a modern REE 1.0 computer application designed to model the behavior of REE ions in adsorptive materials and membranes. The current version of the application is based on several models, such as the Lagergren pseudo-first order, pseudo-second-order and Elovich kinetic models, and the intraparticle diffusion model, the diffusion-chemisorption model, and the Boyd model. The application has been verified on a sample of four different types of adsorptive materials and membranes. The proposed application allowed the analysis of kinetics, but also the mechanisms of the adsorption process, especially those responsible for the rate-determining steps. It was found that Lagergren pseudo-second-order kinetic model was the best-fit model to describe the adsorption behavior of REE ions onto the novel materials and membranes. Other models determined the process of chemisorption was in force for the analyzed cases, and the mechanisms controlling the adsorption processes are diffusion-chemisorption and adsorption is mostly controlled by film diffusion. Additionally, characteristic parameters, such as qe designated from two different models, showed very similar values, which indicates the correctness of the analysis.

2.
RSC Adv ; 12(21): 13367-13380, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520128

RESUMO

The need to reduce greenhouse gas emissions dictates the search for new methods and materials. Here, a novel type of inorganic-organic hybrid materials Fe@MWCNT-OH/SPEEK (with a new type of CNT characterized by increased iron content, 5.80 wt%) for CO2 separation is presented. The introduction of nanofillers into a polymer matrix has significantly improved hybrid membrane gas transport (D, P, S, and α CO2/N2 ), and magnetic, thermal, and mechanical parameters. It was found that magnetic casting has improved the alignment and dispersion of Fe@MWCNT-OH carbon nanotubes. At the same time, CNT and polymer chemical modification enhanced interphase compatibility and membrane CO2 separation efficiency. The thermooxidative stability, and mechanical and magnetic parameters of composites were improved by increasing new CNT loading. Cherazi's model turned out to be suitable for describing the CO2 transport through analyzed hybrid membranes. The comparison of the transport and separation properties of the tested membranes with the literature data indicates their potential application in the future and the direction of further research.

3.
Membranes (Basel) ; 12(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35207053

RESUMO

Novel inorganic-organic hybrid membranes Fe@MWCNT/PPO or Fe@MWCNT-OH/SPPO (with a new type of CNTs characterized by increased iron content 5.80 wt%) were synthesized for CO2 separation. The introduction of nanofillers into the polymer matrix has significantly improved the hybrid membrane's gas transport (D, P, S, and αCO2/N2), magnetic, thermal, and mechanical parameters. It was found that magnetic casting has improved the alignment and dispersion of Fe@MWCNTs. At the same time, CNTs and polymer chemical modification enhanced interphase compatibility and the membrane's CO2 separation efficiency. The thermo-oxidative stability and mechanical and magnetic parameters of composites were improved by increasing new CNTs loading. Cherazi's model turned out to be suitable for describing the CO2 transport through analyzed hybrid membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...